skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Siyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Relaxor ferroelectric (RFE) polymers hold great promise for artificial muscles due to their high actuation strain, high loading stress, and fast response. However, the structural origin underlying their large electrostrictive deformation remains elusive. In this study, we investigate poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)]-based RFE terpolymers, incorporating 1,1-chlorofluoroethylene (CFE) or chlorotrifluoroethylene (CTFE) (the terpolymers are denoted as terP-CFE and terP-CTFE, respectively) as termonomers. Although both terpolymers show similar semicrystalline morphology, drastically different electrostrictive properties are observed. Specifically, the terP-CFE annealed at 100 °C achieves a record-high transverse strain of ~10.6%, whereas 100 °C-annealed terP-CTFE only shows a much lower actuation strain of ~4.2% at the same poling field of 190 MV/m. To elucidate the origin of this difference, time-resolved wide-angle X-ray diffraction, small-angle X-ray scattering, and Fourier transform infrared experiments are performed during in-situ electric poling. An RFE-to-ferroelectric (FE) crystal phase transition is observed for terP-CFE, but is absent for terP-CTFE. Beyond the contribution of the crystalline phase, the oriented amorphous fraction and crystalline defects (e.g., taut-tie molecules) also play significant roles in enhancing electrostriction. This mechanistic insight provides a valuable foundation for the rational design of next-generation RFE polymers with tunable properties through defect-engineering of their semicrystalline structures. 
    more » « less
    Free, publicly-accessible full text available August 18, 2026
  2. Free, publicly-accessible full text available April 22, 2026
  3. A key component of cooling devices is the transfer of entropy from the cold load to heat sink. An electrocaloric (EC) polymer capable of generating both large electrocaloric effect (ECE) and substantial electroactuation can enable EC cooling devices to pump heat without external mechanisms, resulting in compact designs and enhanced efficiency. However, achieving both high ECE and significant electroactuation remains challenging. Herein, it is demonstrated that poly(vinylidene fluoride‐trifluoroethylene‐chlorofluoroethylene‐double bond) [P(VDF‐TrFE‐CFE‐DB)] tetrapolymers can simultaneously generate high electrocaloric effects and electroactuations under low fields. These P(VDF‐TrFE‐CFE‐DB) tetrapolymers are synthesized through the dehydrochlorination of P(VDF‐TrFE‐CFE) terpolymer. By facile tuning the composition of the initial terpolymer to avoid pure relaxor state, tetrapolymers with optimal DB compositions are achieved, near the critical endpoint of normal ferroelectric phase with diffused phase transition. The nearly vanishing energy barriers between the nonpolar to polar phases result in a strong electrocaloric response and significant electroactuation. Specifically, the P(VDF‐TrFE‐CFE‐DB) tetrapolymer exhibits an EC entropy change ΔSof 100 J kg−1 K−1under 100 MV m−1: comparable to state‐of‐the‐art (SOA) EC polymers, while delivering nearly twice the electroactuation of the SOA EC polymers. This work presents a general strategy for developing EC materials that combine large electrocaloric effect and electroactuation at low electric fields. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Small-angle X-ray scattering (SAXS) which records reciprocal-space signals with characteristic Bessel-type oscillations is a powerful technique for studying nanoparticles. However, the size polydispersity (or size distribution) of nanoparticles in an ensemble sample smears the oscillational peaks and valleys in the SAXS profile, making it difficult to extract accurate real-space information (e.g.three-dimensional geometry) on the nanoparticles. In this work, a method capable of eliminating the size-distribution-induced smearing effect from SAXS profiles by taking the known size-distribution function into consideration has been developed. The method employs a penalized iterative regression to fit the pair distance distribution function (PDDF) derived from a SAXS profile, recovering the representative PDDF of the nanoparticles. The method has been evaluated with a series of nanoparticle systems of various shapes and size distributions, showing their PDDF profiles to have high fidelity to the reference ideal PDDF profiles. Inverse Fourier transformation of the recovered PDDF profiles gives SAXS profiles presenting the characteristic Bessel-type oscillations, enabling reconstruction of the representative three-dimensional geometry of the nanoparticles. This method will help in the use of SAXS to image synthesized colloidal nanoparticles where size polydispersity is inevitable. 
    more » « less
  5. Building causal knowledge is critical to science learning and scientific explanations that require one to understand the how and why of a phenomenon. In the present study, we focused on writing about the how and why of a phenomenon. We used natural language processing (NLP) to provide automated feedback on middle school students’ writing about an underlying principle (the law of conservation of energy) and its related concepts. We report the role of understanding the underlying principle in writing based on NLP-generated feedback. 
    more » « less
  6. null (Ed.)
    The involvement of heterogeneous solid/liquid reactions in growing colloidal nanoparticles makes it challenging to quantitatively understand the fundamental steps that determine nanoparticles' growth kinetics. A global optimization protocol relying on simulated annealing fitting and the LSW growth model is developed to analyze the evolution data of colloidal silver nanoparticles synthesized from a microwave-assisted polyol reduction reaction. Fitting all data points of the entire growth process determines with high fidelity the diffusion coefficient of precursor species and the heterogeneous reduction reaction rate parameters on growing silver nanoparticles, which represent the principal functions to determine the growth kinetics of colloidal nanoparticles. The availability of quantitative results is critical to understanding the fundamentals of heterogeneous solid/liquid reactions, such as identifying reactive species and reaction activation energy barriers. 
    more » « less
  7. Metal nanoparticles of multi-principal element alloys (MPEA) with a single crystalline phase have been synthesized by flash heating/cooling of nanosized metals encapsulated in micelle vesicles dispersed in an oil phase (e.g., cyclohexane). Flash heating is realized by selective absorption of a microwave pulse in metals to rapidly heat metals into uniform melts. The oil phase barely absorbs microwave and maintains the low temperature, which can rapidly quench the high-temperature metal melts to enable the flash cooling process. The precursor ions of four metals, including Au, Pt, Pd, and Cu, can be simultaneously reduced by hydrazine in the aqueous solution encapsulated in the micelle vesicles. The resulting metals efficiently absorb microwave energy to locally reach a temperature high enough to melt themselves into a uniform mixture. The duration of microwave pulse is crucial to ensure the reduced metals mix uniformly, while the temperature of oil phase is still low to rapidly quench the metals and freeze the single-phase crystalline lattices in alloy nanoparticles. The microwave-enabled flash heating/cooling provides a new method to synthesize single-phase MPEA nanoparticles of many metal combinations when the appropriate water-in-oil micelle systems and the appropriate reduction reactions of metal precursors are available. 
    more » « less